Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity.

نویسندگان

  • Ramon A Jorquera
  • Sarah Huntwork-Rodriguez
  • Yulia Akbergenova
  • Richard W Cho
  • J Troy Littleton
چکیده

Neurotransmitter release following synaptic vesicle (SV) fusion is the fundamental mechanism for neuronal communication. Synaptic exocytosis is a specialized form of intercellular communication that shares a common SNARE-mediated fusion mechanism with other membrane trafficking pathways. The regulation of synaptic vesicle fusion kinetics and short-term plasticity is critical for rapid encoding and transmission of signals across synapses. Several families of SNARE-binding proteins have evolved to regulate synaptic exocytosis, including Synaptotagmin (SYT) and Complexin (CPX). Here, we demonstrate that Drosophila CPX controls evoked fusion occurring via the synchronous and asynchronous pathways. cpx(-/-) mutants show increased asynchronous release, while CPX overexpression largely eliminates the asynchronous component of fusion. We also find that SYT and CPX coregulate the kinetics and Ca(2+) co-operativity of neurotransmitter release. CPX functions as a positive regulator of release in part by coupling the Ca(2+) sensor SYT to the fusion machinery and synchronizing its activity to speed fusion. In contrast, syt(-/-); cpx(-/-) double mutants completely abolish the enhanced spontaneous release observe in cpx(-/-) mutants alone, indicating CPX acts as a fusion clamp to block premature exocytosis in part by preventing inappropriate activation of the SNARE machinery by SYT. CPX levels also control the size of synaptic vesicle pools, including the immediate releasable pool and the ready releasable pool-key elements of short-term plasticity that define the ability of synapses to sustain responses during burst firing. These observations indicate CPX regulates both spontaneous and evoked fusion by modulating the timing and properties of SYT activation during the synaptic vesicle cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP

Long-term potentiation (LTP) is a compelling synaptic correlate of learning and memory. LTP induction requires NMDA receptor (NMDAR) activation, which triggers SNARE-dependent exocytosis of AMPA receptors (AMPARs). However, the molecular mechanisms mediating AMPAR exocytosis induced by NMDAR activation remain largely unknown. Here, we show that complexin, a protein that regulates neurotransmitt...

متن کامل

Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix

Complexin activates and clamps neurotransmitter release; impairing complexin function decreases synchronous, but increases spontaneous and asynchronous synaptic vesicle exocytosis. Here, we show that complexin-different from the Ca(2+) sensor synaptotagmin-1-activates synchronous exocytosis by promoting synaptic vesicle priming, but clamps spontaneous and asynchronous exocytosis-similar to syna...

متن کامل

Tag team action at the synapse.

Communication between neurons relies on chemical synapses and the release of neurotransmitters into the synaptic cleft. Neurotransmitter release is an exquisitely regulated membrane fusion event that requires the linking of an electrical nerve stimulus to Ca(2+) influx, which leads to the fusion of neurotransmitter-filled vesicles with the cell membrane. The timing of neurotransmitter release i...

متن کامل

A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis

Ca(2+) binding to synaptotagmin 1 triggers fast exocytosis of synaptic vesicles that have been primed for release by SNARE-complex assembly. Besides synaptotagmin 1, fast Ca(2+)-triggered exocytosis requires complexins. Synaptotagmin 1 and complexins both bind to assembled SNARE complexes, but it is unclear how their functions are coupled. Here we propose that complexin binding activates SNARE ...

متن کامل

Complexin-1 Enhances the On-Rate of Vesicle Docking via Simultaneous SNARE and Membrane Interactions

In synaptic terminals, complexin is thought to have inhibitory and activating roles for spontaneous "mini" release and evoked synchronized neurotransmitter release, respectively. We used single vesicle-vesicle microscopy imaging to study the effect of complexin-1 on the on-rate of docking between vesicles that mimic synaptic vesicles and the plasma membrane. We found that complexin-1 enhances t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 50  شماره 

صفحات  -

تاریخ انتشار 2012